Analytical Chemistry
Lecture 1
Concentration

## Concentration

The a mount of solute dissolved in a certain amount of solution is called the concentration of the solution .Although there are many ways to express a concentration ,they all specify a certain amount of solution.

$$
\text { Concentration of a solution }=\frac{\text { amount of solute }}{\text { amount of solution }}
$$

## Mass Percent

The mass percent ( $\% \mathrm{~m} / \mathrm{m}$ )concentration of a solution is the percent by mass of solute in a certain mass of solution .This is also known as weigh percent ( $\% \mathrm{wt} / \mathrm{wt}$ ). In laboratory, both solute and solution are weighed on a balance .

$$
\text { mass } \%=\frac{\text { mass of solute }(\mathrm{g})}{\text { mass of solution }(\mathrm{g})} \times 100 \%
$$

## Mass Percent

The mass percent ( $\% \mathrm{~m} / \mathrm{m}$ ) concentration of a solution is the percent by mass of solute in a certain mass of solution .This is also known as weigh percent (\%wt / wt ). In laboratory, both solute and solution are weighed on a balance .

$$
\text { mass } \%=\frac{\text { mass of solute }(\mathrm{g})}{\text { mass of solution }(\mathrm{g})} \times 100 \%
$$

Suppose we prepared a solution by mixing 8.0 g of KCl (solute) with 42.0 g of water ( solvent ). Together the mass of the solute and mass of solvent give the mass of the solution $(8.0 \mathrm{~g}+42.0 \mathrm{~g}=50.0 \mathrm{~g})$ the mass $\%$ is calculated by substituting in the values into the mass percent expression .


## Problem

What is the mass percent of a solution prepared by dissolving 30 g NaOH in 120 g of water?

## Solution

$30 \mathrm{~g} \mathrm{NaOH}+120 \mathrm{~g}$ water $=150 \mathrm{~g}$ of solution

$$
\text { Mass\% }=\frac{30 \mathrm{~g} \mathrm{NaOH}}{150 \mathrm{~g}} \times 100 \%=20 \%(\mathrm{~m} / \mathrm{m})
$$

## Volume Percent

Because the volume of liquids or gases can by easily measured, the concentrations of their solutions are often expressed as volume percent ( $\% \mathrm{v} / \mathrm{v}$ ). The units of volume used in the ratio must be the same, for example, both in milliters or both in liters .

$$
\text { Volume } \%=\frac{\text { Volume }(\mathrm{mL}) \text { solute }}{\text { Volume }(\mathrm{mL}) \text { solution }} \times 100 \%
$$

We interpret a volume / volume percent as the volume of solute in 100 ml of solution. In the vinegar industry, a label that reads $12 \%(\mathrm{v} / \mathrm{v})$ means 12 ml of alcohol in 100 ml in vinegar .

## Mass / volume percent

A mass / volume percent ( $\% \mathrm{~m} / \mathrm{v}$ ), or weigh / volume percent, is calculated by dividing the grams of the solute by the volume of the ( ml ) of solution and multiplying by 100 . Widely used in hospitals and pharmacies, the preparations of intravenous solutions and medicines involves the mass / volume percent.

$$
\text { mass } / \text { volume } \%=\frac{\text { grams of solute }}{\text { milliters of solution }} \times 100 \%
$$

## Problem

What is the mass / volume percent, $\%(\mathrm{~m} / \mathrm{v})$ of bromine in a solution prepared by dissolving 12 g of bromine in enough carbon tetra chloride to make 250 ml of solution ?

## Solution

mass $/$ volume $\%=\frac{12 \mathrm{~g} \mathrm{Br}_{2}}{250 \mathrm{ml} \text { solution }} \times 100 \%=2 \%(\mathrm{~m} / \mathrm{v}) \mathrm{Br}_{2}$

## Molarity

When the solutes of solutions take part in reactions, chemists are interested in the number of reacting particles. For this purpose use Molarity ( $\mathbf{M}$ ), a concentration that states the number of moles of solute in exactly 1 liter of solution. The molarity of a solution can be calculated knowing the moles of solute and the volume of solution.


For example, if 1.0 mole of NaCl were dissolved in enough water to prepare 1.0 L of solution, the resulting NaCl solution has a molarity of 1.0 M. the abbreviation $M$ indicates the units of moles per liter (moles / L ).

$$
\begin{aligned}
\text { Molarity }(M) & =\frac{\text { moles of solute }}{\text { liters of solution }}=\frac{1.0 \mathrm{~mole} \mathrm{NaCl}}{1.0 \mathrm{~L} \text { of solution }}=\frac{1.0 \mathrm{~mole} \mathrm{NaCl}}{1.0 \mathrm{~L} \text { of solution }} \\
& =1.0 \mathrm{M} \mathrm{NaCl}
\end{aligned}
$$

## Problem

What is the molarity of 60 g of NaOH in 0.25 L solution?

## Solution

Because molarity requires moles of solute, we convert grams of NaOH to moles of NaOH using the molar mass $\mathrm{NaOH}(40)$.

$$
\begin{aligned}
& \begin{array}{l}
60 \mathrm{~g} \mathrm{NaOH} \\
\text { Grams of } \mathrm{NaOH}
\end{array} \times \frac{1 \mathrm{~mole} \mathrm{NaOH}}{40 \mathrm{~g} \mathrm{NaOH}} \quad=1.5 \text { moles } \mathrm{NaOH} \\
& \text { Molar mass } \\
& \mathrm{M}=\frac{1.5 \text { moles of solute } \mathrm{NaOH}}{0.25 \mathrm{~L}}=6 \mathrm{M} \\
& \text { liters of solution }
\end{aligned}
$$

## Normality

The number of gram equivalent wt which dissolve in 1 L of solvent

$$
\begin{aligned}
\text { Normalty } & =\frac{W t}{E q \cdot w t} \times \frac{1000}{V} \\
& =\text { weigh } \\
\text { Wt } & =\text { equivalentweigh } \\
\text { Eq Wt } & = \\
V & =\text { volume }
\end{aligned}
$$

$\mathrm{Eq} \cdot \mathrm{wt}$ for acids $=\frac{\text { M.Wt }}{\mathrm{No} \mathrm{of} \mathrm{H}+}$
HCL, H2SO4, H3PO4
$\mathrm{Eq} . \mathrm{wt}$ for Basie $=\frac{\mathrm{M} . \mathrm{Wt}}{\text { No of } \mathrm{HO}-}$
$\mathrm{NaOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Al}(\mathrm{OH})_{3}$
Eq .wt for salts $=\frac{\mathrm{M} . \mathrm{Wt}}{\text { No of atoms } \times \text { metal equivalent }}$
$\left(\mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)$
Eq $\cdot w t$ for oxi-red $=\frac{\text { M.Wt }}{\text { No of electron donor or excepted }}$

$$
\begin{array}{cc}
\mathrm{MnO}_{4}^{-}+ & +8 \mathrm{H}^{+} \underset{-1}{ } \rightleftarrows \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
+2 & =5 \mathrm{e}-
\end{array}
$$

## Analytical Chemistry

For liquid
$\mathbf{N}=\frac{\text { Specific gravity } \times \text { percentage or density } \times \mathbf{1 0 0 0}}{\text { equivalent weigh }}$
$M=\frac{\text { Specific gravity } \times \text { percentage or density } \times 1000}{\text { molecular weigh }}$

## Problem

Prepare 0.1 N of HCl in 250 ml if you know the Specific gravity is equal 1,1 and the acid percentage 30-34 \%

## Solution

$$
\mathbf{N}=\frac{1.1 \times \frac{32}{100} \times 1000}{36.5}=10 \mathrm{~N}
$$

$\mathrm{N} 1 \times \mathrm{V} 1=\mathrm{N} 2 \times \mathrm{V} 2$
$10 \times \mathrm{V} 1=0.1 \times 250 \mathrm{ml}$
$\mathrm{V} 1=0.25 \mathrm{ml}$

